

Subirrigated Meadow Characteristics

- Ground water at or near soil surface much of growing season – herbaceous plant roots within reach of groundwater
- Soil texture ranges from loamy sands to fine sandy loams
- Soil organic matter content of 1.7 to 3.0%
- Soil pH generally alkaline (>7.6)
- A limiting nutrient is P
- Usually ditched to provide a means of draining meadows of surface water and allowing for haying by late June to mid-July

Aboveground Plant Production (BBR)

Upland Range

Stephenson et al. 2018

Subirrigated Meadow

Andrade et al. 2021

Species Composition

Cool-season grass meadow

(monocultures to diverse – 90+ species)

- Smooth and meadow bromegrasses
- Redtop bentgrass
- Timothy
- Slender wheatgrass
- Quackgrass
- Kentucky bluegrass
- Reed canarygrass
- Native sedges, rushes, and bulrushes
- Prairie cordgrass
- Legumes (mostly exotic) and other forbs

Native Warm-season grass meadow (diverse)

- Big bluestem
- Indiangrass
- Switchgrass
- Prairie cordgrass
- Native sedges, rushes, and bulrushes
- Reedgrasses
- Wheatgrasses
- Native forbs
- Exotic cool-season grasses

Species Composition

Cool-season grass meadows

<30 inches to water table	>30 inches to water table
Sedges, rushes, and bulrushes	Redtop and bluegrass
Reed canarygrass	Slender wheatgrass and quackgrass
Prairie cordgrass	Timothy, bromegrasses, and legumes

As much at 80% of total biomass is exotic coolgrasses and native sedges and rushes

Ehlers et al. 1952 Mousel et al. 2007

Warm-season grass meadows

<30 inches to water table	>30 inches to water table
Prairie cordgrass and reedgrasses	Switchgrass
Sedges, rushes, and bulrushes	Big bluestem and little bluestem
Reed canarygrass and creeping foxtail	Indiangrass

As much as 85% of total biomass is native warmseason grasses

Root Mass of Cool-Season and Warm-Season Meadows

Fig. 7. Root biomass of cool-season and warm-season meadows in the Nebraska Sandhills, 2004.

Fertilization

- Considerable research: Ehlers et al. 1952, Brouse and Burzlaff 1968, Nichols et al. 1990, Stockton and Wilson 2015
- Production potential is high because of shallow water table; limiting nutrients (P and N) can be effectively applied
- However, use of fertilizer dependent on hay value

Four Scenarios of Applying Nitrogen to Sandhills Subirrigated Meadows

Forage Quality

- Variable dependent on species composition
- Cool-season grass meadow ranges from 9% to 6.5% CP and 62% to 55% TDN in early to mid-July
- Mid-September aftermath can be 8% CP and 58% TDN (Stott 2019)
- Fertilization results in increased yields but forage quality can be reduced by 1 percentage unit of CP (8.8 to 8.2%) and 3 percentage units of TDN (55 to 52%) (Nichols et al. 1990)
- General recommendation: optimize forage quality by early harvest, offset yield losses of early harvest by fertilization, and capture abundant quality, palatable late-season aftermath

Cool-Season vs Warm-Season Meadows

Fig. 1. Home Meadow at GSL

Fig. 2. Warm-season plot at North Meadow, BBR.

Aboveground Plant Production

Barta Brothers Ranch Meadow

Gudmundsen Sandhills Lab Meadow

Bauer 2004; Brejda et al. 1989; McConnell and Waller 1984

Forage Quality

Crude Protein Content

- By mid-July, CP content of control and cool-season grass plots were similar
- CP content of cool-season grass plots were similar to reports for other cool-season grass meadows
- With the warm-season grasses, CP content was relatively high through mid-July

Crude Protein Content (%) of Meadows at BBR and GSL

Aboveground Plant Production

- There was a treatment x year interaction for aboveground plant production (p = 0.05).
- In 2013-2015 and in 2018 grazed treatments had greater aboveground production than the control.

Andrade et al. 2021; Richardson 2002

	Year (lbs/acre)						
Treatment	2012	2013	2014	2015	2016	2017	2018
4PR1	4000 ^{Aac}	3950 ^{ABac}	4050 ^{Aac}	3980 ^{Ac}	4810 ^{Aac}	4050 ^{Aac}	5830 ^{Ab}
4PR2	3890 ^{Aa}	3710 ^{ABba}	4330 ^{Aac}	5180 ^{BCd}	4930 ^{Abc}	3750 ^{Aa}	5800 ^{Ae}
Mob	3520 ^{Aa}	4220 ^{Aabcd}	4680 ^{Abcd}	4910 ^{CDc}	4710 ^{Acd}	4000 ^{Aad}	5960 ^{Ae}
Control	3270 ^{Aa}	3220 ^{Ba}	3190 ^{Ba}	4140 ^{ADbd}	5130 ^{Ac}	3610 ^{Aab}	4130 ^{Bd}

¹ Means with different uppercase letters within columns differ (P < 0.10).

² Means with different lowercase letters within rows differ (P < 0.10).

Belowground Annual Production at BBR

Species Composition at BBR

- The warm-season grasses, big bluestem and prairie cordgrass, remained relatively constant in the grazed treatments and prairie cordgrass increased in the control and hay treatment.
- Change in composition of each of the cool-season graminoids did not differ among the treatments.
- White clover composition (%) increased over time for the grazed and hay treatments while it declined on the control.

Species	4PR1 % Change	4PR2 % Change	Mob % Change
Warm-season grass			
Big bluestem	-0.25	0.3	0.7
Prairie cordgrass	-1.1	-1.2	-1.3
Cool-season graminoid			
Quackgrass	28.3	19.2	21
Timothy	-8.5	-11.4	-8.3
Kentucky bluegrass	8.9	7.7	3.2
Sedge	-21.3	-17	-15.8
Forb			
Red clover	-0.4	-1.1	-2.5
White clover	4.2	6.3	3.4

Structural Heterogeneity

Patchy (low stocking density)

Uniform (high stocking density)

High Carrying Capacity/Stocking Rate

- Carrying capacity is relatively high (3.0 AUM/acre or greater)
 - High aboveground plant production
 - Plant growth potential following grazing is high
 - Grazing strategies can be used to achieve high harvest efficiency

Early-Season Grazing

- Grazing mid-May to early June
- High forage quality and matches high nutrient requirements of early lactating cows
- Profitability increases because less hay is fed during winter/spring period
- Higher forage quality of hay harvested later in the growing season
- Increases flexibility in timing of follow-up hay harvest – yield, forage quality, and wildlife habitat
- Horney 1999

Season-Long Grazing

- High carrying capacity because of high production and forage quality and potential for harvest efficiency
- Simple rotation systems (4 or 5 pastures with 1 grazing cycle)
- Management intensive grazing strategies can be used to increase harvest efficiency

Harvest Efficiency of Three Mob-Grazed Meadows in the Sandhills

Season-Long Grazing – Barta Brothers Ranch

- Simple rotational grazing system: (4 pasture rotation with 1 or 2 grazing cycles)
- Management intensive grazing: mob grazing (ultrahigh stocking density) with 1 cycle
- 60 to 80 day grazing season with
 0.5 to 15-day grazing periods
- 3 AUM/acre stocking rate

Grazing System	Plant Production	Forage Quality	Harvest Efficiency	ADG
4PR1	=	-	-	-
4PR2	=	+	-	+
Mob	=	-	+	-

Andrade et al. 2021

GSL Grazing Study (Volesky et al. 2002):

- 4 AUM/acre optimum stocking rate
- No benefit to more than 3 grazing cycles

Windrow Grazing to increase harvest efficiency and reduce harvest/feeding costs Volesky et al. 2002

- Graze in May at 1.3 AUM/acre
- Fertilize with N, P, and S in early June
- Windrow in early to mid-September
- Bale alternate windrows
- Graze remaining windrows November-January

Windrow Grazing

- Similar calf gains
- Windrowed and baled hay maintained similar forage quality over time
- Little to no effect of grazing windrows on subsequent herbage yield
- Feeding costs were \$0.16/hd/day under windrow grazing compared to \$0.34/hd/day for bale feeding
- Net gain per head averaged \$19.87 higher for windrow grazing than for bale feeding

Year		Windrow Grazing	Bale Fed
1997/98	Total Gain	81 lbs	60 lbs
	Daily Gain	1.17 lbs	0.86 lbs
1998/99	Total Gain	42 lbs	37 lbs
	Daily Gain	0.57 lbs	0.51 lbs

Wildlife Habitat Greater PrairieChicken

Powell et al. 2020 Hiller et al. 2019 Olney Harrison et al. 2017

- Leks closely cropped areas because of haying or intensive grazing
- Nesting patchy structure especially in dry years when upland sites don't provide adequate nesting habitat

Fledglings - meadow vegetation generally too dense for fledglings

Wildlife Habitat Meadowlarks

Giovanni 2009 Giovanni et al. 2015

- Haying date of mid-July has little effect on nest and fledgling survival
- Plant structure important woody plants and tall herbaceous plants important for adults and fledglings to get away from predators and inundation
- Fledglings selected sites with shallow litter and taller standing vegetation

Managing Wet Meadows

- Prescribed Burning
- Reseeding/Interseeding
- Manipulating Drainage
- Recreation/Aesthetics
- Other